Novel Wood LCA and **EPDs**

Delwyn Jones1, Mathilde Vlieg1,2, David Baggs, Omar Biaz3 and Nana Bortsie-Aryee ¹The Evah Institute, Mount Tamborine QLD Australia ²Vlieg LCA, Yeronga, Brisbane QLD Australia ³ Global GreenTag, Morningside Brisbane Australia delwyn@evah.com.au

The Evah Institute VliegLC GREEN TAG

Conclusions

As forest product impacts and benefits vary with form, fire, fuel, life and fate their EPDs require in-depth knowledge and long term modelling of source nations. Overall these FSC products offer high supply, climate and ecosystem security and human health benefits as well as circularity scores. Tropical wood products rarely offer significant supply, climate or ecosystem security or human health benefits. Benefit analysis offers communication of positive outcomes to communities and much needed quantitative circularity scores for circular economy.

Background

Leading influencers' carbon accounting systems include sequestration [1-7]. Looming climate change tipping points and critical time factors demand consistent carbon drawdown and storage accounting to report climate braking and mitigation outcomes.

Objectives

The work transforms Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA) from 3rd party certified ISO 14025 and EN15804 compliant Environmental Product Declarations (EPDs) into Life Cycle Benefit Assessment (LCBA) and circularity scores.

Introduction

As summarised in Table 1 the work modeled 70 Forest Stewardship Council Certified (FSC) value chains as well as 5 tropical ones [1].

Table 1 FSC and Old Growth Forest Log Source and Type

Place	Pine	Fir	Ash	Beech	Oak	Gum	Hard	Fruit	Other
AU Australia	9				1	1	1		3
BZ Brazil									2
CA Canada		1							4
CN China						1	1	12	1
EU Europe	3	5	5	5	1	1		1	1
FJ Fiji								2	3
JP Japan		1							
MY Malaysia									1
IA Indonesia									1
NZ New Zealand	1	1							1
US United States of America	1	1			1			1	1
TAS Tasmania					1				1
ZA South Africa							1		1

Scope and Methodology

The scope includes all significant resource acquisition, water, fuel and energy use, power generation and distribution, freight, refining, intermediates, manufacture, scrap, packing and landfill flows to disposal and end-of-waste state.

In Australia, end of life incineration is rare. Typical scrap recovery is 90% and landfill 10%. Australian and US landfill methane emission is much lower than the IPCC base case [2].

The LCA was compiled in Boustead, SimaPro 8, OpenLCA and LCADesign™ software. LCIA applied CML methods and characterisation factors [10]. Global warming (GWP) IPCC 2013 AR5 emission factors apply [11]

LCBA Evah2020 methodology [11] was used to quantify positive outcomes of:

- Supply energy and resource viability (SERV) renewal and recovery;
- Climate change braking and carbon security (CLIMES);
- Positive ecosystem replenishment fractions (PERF) of species and habitat, plus
- Hale human health adjusted life and ability years (HALY).

Material and Modelling

Supply chain modeling over 3 rotations in 100 years accounted for the:

Form of prior high value growth deforestation to compensate for land use change; •Fire losses and re-growth history to factor soil, detritus, log and product carbon flows;

- •Fuel type and scrap use in debarking, saw-milling plus product manufacture, and
- *Functional service life and end of life fate including reuse and renovation (5-75%).

Results and Discussion

Tables 2, 3 and 4 compare global warming (GWP) potential for different ranges of durable building and fitout wood flooring, framing, cladding, paneling and paper /kg cradle to grave. Results do vary differently per cubic metre volume or on an area basis Attribution of carbon sequestration varied mostly with land use change, forest form and biodiversity as well as fire loss [2, 3, 4, 8, 9, 10].

Tropical old growth rainforest and fire loss cancelled carbon uptake. Other logs had full to minor CO2e uptake, varying with fire loss plus fuel use to debark, mill and process

-2.0

-2.5

Table 3 Fitout GWP Range/kg

60yr Wood Building Product/kg 0.5 0.0 Decking -0.5 -1.0 -1.5 C02e

Table 4 Built GWP Range/kg

Tables 5 and 6 list cradle to grave LCI, LCIA and LCBA results for Australian FCS particleboard sub-floor 13kg/m² 60 years use. The fire loss was low but significant. Results in Table 5 show the flooring offering positive supply, climate and ecosystem security and human health benefits and circularity scores for the circular econ

Table 5 Particleboard I CL and I CIA Results/m² 60vr

Inventory	Result	Unit	Impact Potential	Result	Unit	
Embodied Water	46.4	litre	Ozone Depletion	3E-08	kg R11 _e	
Finite Material	12.9	kg	Greenhouse Gas	-26	kg CO _{2e 100}	
Renewable Matter	50.8	kg	Ecosystem Damage	7E-05	PDF*m ² pa	
Feedstock	437	MJ	Human Health Damage	3E-04	DALY	
Fossil Fuel	183	MJ	Acidification	0.31	kg SO _{2e}	
Biomass Fuel	66.8	MJ	Fossil Fuel Depletion	11.5	MJ _{surplus}	
Renewable Energy	0.92	MJ	Mineral Resource	0.05	MJ _{surplus}	

Table 6 Particleboard LBCA and Circularity Results/m² 60vr

Benefit	Benefit Layer	Result	Unit	Circularity Score or Outcome
	Material Reuse	69	MJ reuse	34% resource recovery
	Fuel Recovery	69	MJ surplus	34% fuel recovery
	Water Recovery	21	litre reuse	17 % water recovery
SERV	Material Renewal	378	MJ biogenic	82% feedstock renewal
	Energy Renewal	75	MJ surplus	37% energy renewal
	Fuel Renewal	73	MJ surplus	36% fuel renewal
	Water Renewal	10	litre _{rain}	9% catchment on site
	Climate Brake	47	kg CO _{2e20}	181% Carbon drawdown
CLIMES	Biomass Bank	27	kg CO _{2e100}	104% Carbon in product
	Soil Carbon Bank	53	kg CO _{2e100}	204% Carbon in soil fibre
	Climate Security	38	kg CO _{2e100}	146% ecosystem secure
DEDE	Forestry Security	452	MJ retain	73% biota and seed biome
PERF	Biodiversity Security	0.26	m²pa	wildlife forage and habitat
	Soil Health Security	0.08	m²pa	microbe and worm refugia
	Human Wellness	10E-05	HALY	years health and ability gain
	Dust Avoidance	0.21	kg PM ₁₀	respiratory health gain
TALY	Organic Safe Air	189	g _{NM} VOC	respiratory health gain

Tables 7 and 8 show cradle to grave LCI, LCIA and LCBA results per capita toilet paper use of 160kg/20 years. FSC fibre was 85% Chinese, 5% NZ, 4% Russian, 2% US, 2% Australian and 1% Canadian. Fibre fate was to soil .

Results in Table 8 show this paper scoring highly on supply, climate and ecosystem security and human health benefits as well as circularity

Table 7 Toilet Paper LCI and LCIA Results /capita 20vr

	2 P 2				
Inventory	Result	Unit	Impact Potential	Result	Unit
Embodied Water	3357	litre	Ozone Depletion	4.0E-08	kg R11 _e
Finite Material	337	kg	Greenhouse Gas	-268	kg CO _{2e 100}
Renewable Matter	826	kg	Ecosystem Damage	0.004	PDF*m ² pa
Feedstock	6925	MJ	Human Health Damage	0.032	DALY
Fossil Fuel	4308	MJ	Acidification	17.0	kg SO _{2e}
Nuclear Energy	196	MJ	Fossil Fuel Depletion	286	MJ _{surplus}
Biomass Fuel	6163	MJ	Mineral Resource	0.19	MJ _{surplus}

Table 8 Toilet Paper LCBA and Circularity Results / capita 20 yr

Benefit	Benefit Layers	Result	Unit	Circularity Score or Outcome
	Energy Recovery	6163	MJ surplus	89% recovery of energy
SERV	Material Renewal	5476	MJ surplus	87% renewable feedstock
	Energy Renewal	6296	MJ surplus	58% renewable energy
	Climate Brake	221	kg CO _{2e20}	Carbon embodied in product
CLIMES	Climate Banking	589	kg CO _{2e20}	Carbon drawdown by biomass
	Biomass Banking	268	kgCO _{2e100}	Carbon sequestered in product
	Climate Security	590	kg CO _{2e100}	Retains ecosystem potential
DEDE	Biodiversity Security	483	m²*yr	Forest flora and seed for forage
FENF	Water Catchment	16	Litre _{rain}	0.5% local rainwater surplus
	Forestry Security	6163	MJ	89% seed, biota and soil biome
	Human Wellness	0.01	HALY	25% longer life and ability years
	Dust Avoidance	0.74	kg PM ₁₀	respiratory health gain
HALT	Repair Ozone Layer	5E-08	kg R11 _e	57% more ozone reparation
	Organic Safe Air	6E-08	g _{NM} VOC	6.2% respiratory health gain

References

[1] Jones D G, 2018 LCA Reports to Global GreenTag^{CertTM} <u>http://www.globalgreentag.com/epd-program/</u> [2] Vlieg M, Jones D, Ashar S, 2017 Forest Product LCA: Carbon Form, Fire, Fuel and Fate, SETAC Brussels.

[3] CORRIM 2009 Maximizing Forest Contributions to Carbon Mitigation, CORRIM FS5
 [4] Ajani, J.I., Keith, H. et al. 2013 Comprehensive carbon stock and flow accounting: national framework 89 61-72

[4] Ajahi, J., Retini, F., et al. 2013 Comprehensive carbon stock and new accounting, national inductions of 961-72.
[5] Ajani, J. and Comisari, P. 2014 Towards a comprehensive and fully integrated stock and flow framework for carbon accounting in Australia, ANU, ACT Australia
[6] United Nations 2012 System of Environmental Economic Accounting Central Framework (7] Butler, E., Stockmann, K., et al 2014. Estimates of carbon stored in harvested wood products from USFS, SWR, 1909-2012
[8] Bradshaw, C.J.A. 2012. Little left to lose: deforestation and forest degradation in Australia since European colonization, J. M Plant Ecology 51:1109-120
[9] Vögtlander, J.G., van der Velden, N.M. et al P. 2014. Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo, Int. Jrl. CA 19:13-23
[10] ReciPe, Characterisation, http://www.lcia-recipe.net/characterisation-and-normalisation-factors#TOC-Carbon-Uptake last accessed 4 Nov 2018
[11] Jones D, Vieig M, et al 2017 Positive LCA Factoring Planetary Boundaries SETAC Brussels.
[12] Food and Agriculture Organization of the United Nations, Global Forest Resources Assessment 2005, Progress towards sustainable forestry, FAO FP 147

CO_{2e20year}

GWP