Trade Essentials® Particleboard Flooring

This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with ISO 14025 for business to business communication.

The declared product Trade Essentials® Moisture Resistant Particleboard Flooring was made by The Laminex Group at their Dardanup plant in Western Australia in 2015 for sale with a 7 year warranty for commercial residential and industrial sector applications.

The Laminex Group is a leading manufacturer, distributor and marketer of decorative surfaces.

Laminex produces the Trade Essentials® Particleboard Flooring, a high resistant product made with extra fine wood particle featuring easy to use tongue and groove jointing.

Through the GreenFirst corporate policy, Laminex employs a range of processes and latest technology to ensure carbon footprint reduction and delivery of environmentally preferable products.

Committed to sustainable building practices, The Laminex Group has undertaken initiatives on product and manufacturing fronts to provide a range to enable GBCA Green Star® rated projects.

Laminex recognises benefits from low emissions and are continually striving to reduce carbon emissions cross their supply chain.

The group also undertakes various initiatives to minimise water usage and wastage.

Their Gympie Plant has programs to improve self-sufficiency with the aim of a zero water emission site.

Laminex is committed to safer workplaces with sites certified to AS/NZS 4801.

Most sites are also ISO 14001 certified.

Laminex also sources its timber raw materials as well other wood pulp paper products from certified responsible sources certified to FSC, CoC and AFS/PEFC.

The website <u>http://www.laminex.com.au</u> has more information.

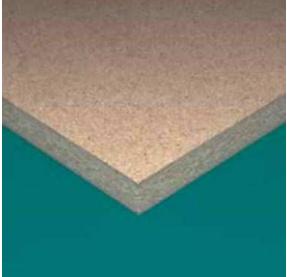


Fig 1 Trade Essentials® Particleboard Flooring

Compliant to ISO 14025

Laminex

Trade Essentials® Particleboard Flooring

Table of Contents

Heading	Page
1. Details of This Declaration	3
2. Product Characterisation	3
3. Green Star® Certified Credits	3
4. Sustainability Assessment Scores	4
5. Type 1 Ecolabel	4
6. Verification of this Declaration	4
5. Base Material Origin and Detail	5
6. Packaging, Installation, Use & Disposal	5
7. Whole of life Performance	5
8. Life Cycle Inventory Results	6
9. Life Cycle Impact Results	6
10. Life Cycle Benefit Potential	7
11. Life Cycle Benefit Results	8
12. Supply Chain Modelling	9
13. Life Cycle Assessment Method	10
14. Data Sources Representativeness and Quality	11
15. Supply Chain Modelling Assumptions	12
16. References for this LCA & EPD	13
17. Reviewers Report Conclusions	14

Different program EPDs may not be comparable as e.g. Australian transport is more than elsewhere. **Further explanatory information is found at** <u>http://www.globalgreentag.com/</u> or contact: <u>certification1@globalgreentag.com</u> © This EPD remains the property of Global GreenTag Pty Ltd.

Compliant to ISO 14025

Laminex

Trade Essentials® Particleboard Flooring

1. Details of This Declaration

Program Operator	GreenTag Global Pty Ltd hereafter called Global GreenTag noted at www.globalgreentag.com
EPD Number	TLG-022-2018
Date issue	26 th November 2018
Validity	26 th November 2021
Reference PCR	Compliant with PCR MRSSF:2017 Moisture Resistant Self Supporting Flooring
Time	Made in and sold from 2015 for 60 years use
Geography	Made in Australia. Uses are assumed as for Australasia.
Application	Commercial, Residential and Industrial building interiors
Declared Unit	Trade Essentials® particleboard flooring per kilogram cradle to gate
Functional unit	Sixty years use of Trade Essentials® moisture resistant self supporting 13.1kg/m ² area particleboard flooring from cradle to grave.

2. Product Characterisation

Definition	Trade Essentials® Particleboard Flooring made by Laminex for use in commercial, residential and industrial buildings interiors.
Standard	ISO 14486:2012 Laminate Floor Covering – Specification AS/NZS 1860.1:2002 Particleboard Flooring – Specifications AS/NZS 1859.2:2004 Reconstituted wood-based panels

3. Green Star® Certified Credits

Products are relevant to the Green Building Council of Australia's (GBCA) Green Star® scheme. If required this EPD is evidence the declared product meets the following Green Star® credits. It may be used as evidence in Green Star® submissions for those credits.

The product is certified by GBCA recognised Global GreenTag GreenRate to meet the following credits of Green Star®:

- Interiors V1.2: Sustainable Products, Indoor Pollutants
- Design and As Built V1.2: Sustainable Product, Indoor Pollutants
- Performance V1.2: Refurbishment Materials

GBCA Disclaimer

Green Star® is a registered mark of the Green Building Council of Australia (GBCA). Assessments shall not be reproduced in part at any time. Rating Tools and Technical Manuals are subject to change by the GBCA. This EPD provides Technical Opinion and as such is not endorsed by the GBCA or its agents. Green Star® Technical Manuals give technical details of credit requirements.

·

G O L D PLUS GreenRate | Level A trust brands

Laminex

Trade Essentials® Particleboard Flooring

4. Sustainability Assessment Scores

Table 1 lists Global GreenTag Sustainability Assessment Criteria (SAC) scores prior to weighting and then used to determine the GreenTag EcoPOINT¹.

Table I Cradie to Grave Normalised Green Tag EcoPOINT & SAC Scores		
Category Potential	Results (-1 to +1)	
Building Synergy	1.00	
Health & Ecotoxicity	0.25	
Biodiversity	0.21	
LCA Score	0.19	
Greenhouse Gas Emissions ²	-0.60	
Social Responsibility	0.90	
GreenTag EcoPOINT	0.24	

Table 1 Cradle to Grave Normalised GreenTag EcoPOINT & SAC Scores

SAC scores are normalised against business as usual (BAU) product performing comparable functions under the same category rules. Lower scores show better environmental and social benefits with fewer impacts and damages. Considering sustainability:

- worst case BAU results = 1.0
- neutral = 0.0 and
- net positive benefit = -1.0

5. Type 1 Ecolabel

The declared product Type 1 Ecolabel achieved

Global Gold PLUS GreenTag^{CertTM} GreenRate Level A

6. Verification of this Declaration

This EPD was approved on 26th November 2018 according to requirements of ISO14025 8.1.3b.

Role	Name	Position	Signature
PCR Review Chair	Murray Jones	Ecquate Pty Ltd CEO	Nof 1-2018
LCI Developer	Delwyn Jones	The Evah Institute CEO	Dehun Jones
LCARate, LCIA & EPD Developer	Nana Bortsie- Aryee	Global GreenTag Assessor	27/11/2018
3 rd Party LCI Verifier	Shloka Ashar	Global GreenTag Lead Auditor LCI Verifier	29/11/2018
Internal EPD Audit	David Baggs	Global GreenTag CEO	Donizka DP

¹ http://www.ecospecifier.com.au/knowledge-green/glossary.aspx#greentagecopoint

² Stocker et al (eds.) Climate Change 2013: The Physical Science Basis, CH8, IPCC AR5, Cambridge U Press, UK.

Trade Essentials® Particleboard Flooring

5. Base Material Origin and Detail

Table 2 lists key components by function, type, key operations, sources and % mass share.

Table 2 Base Ma	terial			
Function	Component	Production	Origin	%
Substrate	Pine wood	Forest, Hew, Chip, Bind, Press	Australia	>85 <90.0
Binder	MUF ³	Extract, Refine, Compound	Australia	>15 <20.0
Water resist	Wax emulsion	Extract, Refine, Emulsify	Global	>1.0 <1.5
Hardener	Citric acid	Grow, Refine, Crystalise	Australia	>0.2 <0.3
Hardener	Ammonium Sulphate	Extract, Refine, Crystalise	Australia	>0.1 <0.2
Binder	Urea	Extract, Refine, Compound	Australia	<0.1

6. Packaging, Installation, Use & Disposal

Health Safety & Environment	Apart from compliance to occupational and workplace health safety and environmental laws no additional personal protection is considered essential.
Cleaning & Maintenance	The recommended cleaning and maintenance raises no ecosystem or human health concerns. Care and maintenance guides are on company websites.
Packaging	Cardboard forms & cartons, plastic wrap & strapping on reused pallets.
Residual Scrap	No mill off-cuts. Installation scrap of 5% is assumed to landfill.
Service life	Residential and commercial refits vary but 20 year life is assumed typical.
Scenario	Floor is assumed covered so no direct floor surface cleaning was modelled.
Recycling	Home mill, fabrication and installation scrap is reworked into new product.
Re-use	This study assumes 60% product is serviceable for reuse over 40 more years.
Disposal	It assumes 30% is recycled. Incineration is rare in Australia so none is modelled.

7. Whole of life Performance

Health Protection	The product does not contain levels of carcinogenic, toxic or hazardous substances that warrant ecological or human health concern cradle to grave. It passed the Ecospecifier Cautionary Assessment Process (ESCAP) and no issues or red light concerns existed for product human or ecological toxicity.
Effluent	The LCI results and ESCAP raised no red light concerns in emissions to water ⁴ .
Waste	Cradle to grave waste to landfill was 1% hazardous and 99% non-hazardous.
Environmental Protection	Continuous improvement under the maker's certified ISO14001 EMS aims to avoid toxics, waste and pollution plus reduce their material and energy use.
Environmental Health Effects	Installed products are certified as having VOC's compliant with Green Star® IEQ VOC credits for indoor environment ⁵ quality credits. No other potential in- use impacts on environment or health are known.

³ Melamine Formaldehyde

⁴ According with national standards in ANZECC Guideline For Fresh & Marine Water Quality (2000)

⁵ in accordance with national standards and practice

Trade Essentials® Particleboard Flooring

8. Life Cycle Inventory Results

Table 3 lists material and energy resource use per kilogram from the cradle to gate and per square metre from the cradle to grave including all phases and transport.

Table 3 Inventory of Flows per Declared and Functional Units

Total flow used	Declared unit/kg Cradle to Gate		Functional unit 13.1kg/m ² Cradle to Grave	
	Unit	Result	Unit	Result
Embodied Water	litre/kg	7.8	litre/m ²	108.1
Recycled Water	litre/kg	1.4	litre/m ²	19.3
Finite Material	kg/kg	1.0	kg/m ²	14.0
Recycled Material	kg/kg	4.6E-04	kg/m ²	0.1
Renewable Material	kg/kg	3.9	kg/m ²	54.2
Carbon Brake	kg CO _{2e 20}	1.7	kg CO _{2e 20} /m ²	23.22
Carbon Sink	kg CO _{2e 100}	2.0	kg CO _{2e 100} /m ²	26.12
Ozone Depletion	kg R11 _e	1.0E-08	kg R11 _e	1.3E-10
Embodied Feedstock ⁶	MJ/kg	33.6	MJ/m ²	464.4
Fossil Fuel ⁷	MJ/kg	14.77	MJ/m ²	211.1
Nuclear Energy	MJ/kg	0.01	MJ/m ²	0.13
Hydrogen Energy	MJ/kg	<0.01	MJ/m ²	0.02
Recovered Energy	MJ/kg	5.09	MJ/m ²	0.42
Biomass Fuel	MJ/kg	5.06	MJ/m ²	68.6
Hydro Power	MJ/kg	0.03	MJ/m ²	0.41
Solar Energy	MJ/kg	0.02	MJ/m ²	0.25
Wave/Tidal Energy	MJ/kg	0.04	MJ/m ²	0.60
Fuel + Feedstock	MJ/kg	43.4	MJ/m ²	665.2

9. Life Cycle Impact Results

Table 4 shows potential life cycle impact of 60 years of product use per square metre cradle to grave.

Table 4 Impact Potentials/m² Functional Unit Cradle to Grave

Evaluation Category	Unit	Result
Ecolndicator 99 Score	ecopoint	0.49
Greenhouse Gas Emissions	kg CO _{2e 100}	-26.12
Ecosystem Quality Damages	PDF*m ² *yr	6.61E-05
Human Health Damages	DALY	2.49E-04
Acidification	kg SO _{2e}	0.30
Fossil Fuel Depletion	MJ _{surplus}	11.37
Mineral Resource	MJ _{surplus}	0.01

⁶ Available for recovery in the end of life

⁷ Peat, lignite, coal, gas, oil, sulphur, hydrogen, nuclear and unspecified sources

Trade Essentials® Particleboard Flooring

10. Life Cycle Benefit Potential

Manufacturer's details on biomass and renewable energy flows confirm the product's use has the following qualitative benefits and positive outcomes cradle to grave.

Climate, water and soil security benefits arise from reliance on renewable biomass and energy.

Climate and Water Security	Repetits of Renewable	Content and Scrar	Rouse as Fuel
Cillingle and water Security	y Dementis un nemewable	Content and Scrap	neuse as ruei

	Carbon drawn down from air by flora sequestered in biomass in product
Climate Security	Brakes climate change via carbon sequestered & retained in forests and farms
occurry	Carbon sequestered in standing pine forestry also braking global warming
Water	Hectares intensive pine forest flora stabilising rain catchment and water table
Security	Forest leaf litter mulches retains soil water and reduces water stress
Soil Carbon	Carbon sequestered in unburnt tree roots in forest soil also brakes climate change
Security	Carbon locked in standing pine forest detritus and roots in soil to brake climate change

Forestry industry security benefits arise from reliance on renewable supply.

Resource Supply Security Benefits of Renewable Content and Scrap Reuse as Fuel

	Forestry Security	Hectares certified pine forest and flora for foraging and grazing
		Hectares extensive certified forest flora for microbe, bird, bee and livestock forage
		Certified forest flora for microbe, bird, bee, pollinator foraging and livestock grazing
		Hectares extensive certified pine forest flora stabilising soil accumulation and erosion

Soil, biodiversity and habitat health and security benefits arise from reliance on renewable supply.

Soil, Habitat and Biodiversity Security Benefits of Renewable Content and Scrap Reuse as Fuel

Soil Health	Extensive forest and farm leaf & litter mulching soil reducing temperature stress
and Security	Extensive forest soil for microbe and worm biome nutrition and soil development
Biodiversity	Hectares extensive forest flora for biodiverse bird, bee, pollinator and wildlife forage
Security	Hectares extensive standing pine forest for biodiverse wildlife and pollinator forage
Habitat	Hectares extensive standing forest flora for soil retention and soil biota refugia
Security	Hectares extensive standing pine forest flora for bird, bee, pollinator and wildlife refugia

Local and global human and ecological health security benefits flow from reliance on renewable supply.

Health Benefits of Renewable Content and Scrap Reuse as Fuel

Soil Habitat	Forest soil microbe and worm biome nutrition enhances soils and CO _{2e} drawdown
Health	Forest leaf & litter forage enhancing soil conditioning and mulching
Land Use &	Saves landfill space by using scrap as energy instead of waste to landfill
Space	Saves natural land use in refugia around extensive pine resin forest
Ecological	Health and safety benefits with climate security from braking global warming
health	Environmental health benefits from avoiding dust and pollution from fossil fuel use

Trade Essentials® Particleboard Flooring

11. Life Cycle Benefit Results

This section shows quantitative Life Cycle Benefit Assessment (LCBA) for 60 years product use cradle to grave. Table 5 lists benefits calculated using the Evah 2020 LCBA method showing results $/m^2$.

Table 5 Cradle to Grave Evah 2020 Gross Benefit Potential Results/m²

Benefit Layers	Units	Process Outcome	Result					
Climate Security (CL	IMES)		1					
Climate Brake	kg CO _{2e20}	Carbon drawdown from air by biomass	45.9					
Climate Bank	kg CO _{2e20}	Carbon embodied in product biomass	23.0					
Biomass Bank	kg CO _{2e100}	Carbon sequestered in product over lifetime	26.4					
Soil Carbon Bank	kg CO _{2e100}	Standing forest roots bank Carbon in soil	26.4					
Supply Energy & Res	Supply Energy & Resource Viability: Energy & Fuel (SERV)							
Energy Renewal	MJ _{surplus}	38% Reliance on renewable energy	75.2					
Energy Recovery	MJ _{surplus}	0.2% Reliance on recovered energy	0.42					
Fuel Recovery	MJ _{surplus}	34% Reliance on recovered fuel	34.7					
Fuel Renewal	MJ _{surplus}	37% Reliance on biofuel	74.0					
Supply Energy & Res	Supply Energy & Resource Viability: Renewables & Biomass (SERV)							
Material Biomass	MJ _{biogenic}	94.7% Reliance on Renewable Feedstock	379.8					
Forestry Security	MJ _{retain}	Biome litter, roots biota & seed bank in soil	452.9					
Resource Recovery	MJ _{reuse}	34% Reliance on recovered resources	34.7					
Water Recovery	litre _{reuse}	7.5 % Reliance on recovered water	20.9					
Water Catchment	litre _{rain}	8.6% reliance on-site rain & groundwater	10.4					
Positive Ecosystem	Positive Ecosystem Replenishment Fraction (PERF)							
Climate Security	kg CO _{2e100}	Retained Ecosystem Potential	38.2					
Habitat Security	m²*yr	Pine forest flora, wildlife and pollinator habitat	7.9E-02					
Biodiversity Security	m ² *yr	Standing forest leaf & litter bird & wildlife forage	1.6E-01					
Soil Health &	m ² *yr	Biome mulch, microbe & worm development	7.9E-02					
Security	m ² *yr	Standing forest retained soil & biota refugia	7.9E-02					
Hale Human Health Adjusted Life Years (HALY)								
Human Wellness	HALY	Years gained by avoided death and disability risk	8.1E-05					
Dust Avoidance	kg PM ₁₀	Avoided emission and captured dust pollution	0.21					
Ozone Layer Repair	g R11 _e	Avoided ozone depleting chemical pollution	4.3E-11					
Organic Safe Air	Avoided volatile organic chemical pollution	231.7						

Trade Essentials® Particleboard Flooring

12. Supply Chain Modelling

Processes to acquire, refine, transport, fabricate, coat, use, clean, repair, reuse and dispose of metal, masonry, ceramic, timber, glass, plastic and composites are modelled.

These include those of:

- Mining, extracting and refining resources to make commodities and packaging;
- Acquiring, cultivating, harvesting, extracting, refining produce and biomass;
- Fuel production to supply power and process energy and freight;
- Chemicals use in processing resources, intermediates and ancillaries;
- Process energy, fuel and freight of resources, intermediates and ancillaries;
- Use, cleaning, recoating, repair, recycling, re-use and landfill, as well as
- Infrastructure process energy transformed and material wear loss e.g. tyres.

A flow chart in Figure 2 shows key product supply chain operations from cradle to fate.

While all known operations are included not all are shown.

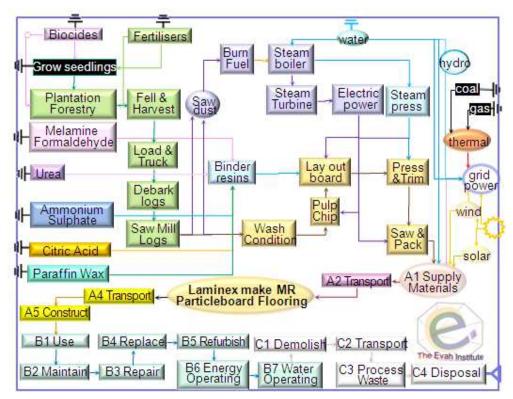


Figure 2 Major Product Operations

Trade Essentials® Particleboard Flooring

13. Life Cycle Assessment Method

LCA Author	The Evah Institute as described at <u>www.evah.com.au</u>
Study Period	Factory data was collected from 2015 to 2018
LCA Method	Compliant with ISO 14040 and ISO 14044 Standards
LCIA method	EcoIndicator 99 Life Cycle Impact (LCIA) Assessment
Scope	Cradle to Fate including all supply chain phases and stages depicted in Figure 2.
Phases	The LCA covered all known flows in all known stages cradle to end of life fate.
Assumptions	Use is to typical Australian Facility Management professional practice.
Scenarios	Use, cleaning, maintenance plus disposal and re-use were scenario-based using Facility Management Association denoted and published typical operations.
System Boundaries	The LCA covers all operations in the system boundary depicted in Figure 3.
Processes	All known processes are included from resource acquisition, water, fuel & energy use, power generation & distribution, freight, refining, intermediates, manufacture, scrap reuse, packing and dispatch installation, use, maintenance and landfill.

All known processes are included from resource acquisition, water, fuel & energy use, power generation & distribution, freight, refining, intermediates, manufacture, scrap re-use, packing and dispatch, installation, use, maintenance and landfill. All significant waste and emission flows from all supply chain operations involved to make, pack and install the product are included.

Modeling Phases		Actual Produce		Scenarios										Potential			tial	
						Building Fabric & Operation				End of life					Beyond Boundary			
Modules	A1	A2	A3	A4	A5	B1	B2	B3	Β4	B5	C1	C2	C3	C4		D 1,	23	
Unit Operations	Resource supply	Transport	Manufacturing	Transport	Construction	 B6 Op B7 Op		-		-		Transport	Process Waste	Disposal		Reuse	Recovery	Recycling
Cradle to Grave	Mar	Mandato			1	Vandat	· ·										Optio	
Cradle to Gate+options Cradle to Gate	ead	h ph	ase	Optional for each and every phase										Optional				

Figure 3 Phases and Stages Cradle to Grave

Evah industry databases cover all known domestic and global scope 1 and 2 operations. They exclude scope 3 burdens from capital facilities, equipment churn, noise and dehydration as well as incidental activities and employee commuting. The databases exist in top zones of commercial global modelling and calculating engines. Quality control methods are applied to ensure:

- Coverage of place in time with all information⁸ for each dataset noted, checked and updated;
- Consistency to Evah guidelines⁹ for all process technology, transport and energy demand;
- Completeness of modeling based on in-house reports, literature and industry reviews;
- Plausibility in 2 way checks of LCI input and output flows of data checked for validity, plus
- Mathematical correctness of all calculations in mass and energy balance cross checks.

Electricity supply models in active databases are updated annually. As each project is modelled and new data is available the databases are updated and audited by external Type 1 ecolabel certifiers.

⁸ Jones D G (2004) LCI Database for Commercial Building Report 2001-006-B-15 Icon.net, Australia 9 Evah Tools, Databases and Methodology Queensland, Australia at http://www.evah.com.au/tools.html

Trade Essentials® Particleboard Flooring

14. Data Sources Representativeness and Quality

Primary data used for modelling the state of art of each operation includes all known process for:

- Technology sequences;
- Reliance on raw and recycled material;
- Energy and water use;
- High and reduced process emissions;
- Landfill and effluent plus
- Freight and distribution systems.

Primary data is sourced from clients, Annual Reports and their publications on corporate locations, logistics, technology use, market share, management systems, standards and commitment to improved environmental performance. Information on operations is also sourced from client:

- Supply chain mills, their technical manuals, corporate annual reports and sector experts, and
- Manufacturing specifications websites and factory site development license applications.

Background data is sourced from the International Energy Agency, IBISWorld, USGS Minerals, Franklin Associates, Boustead 6, Plastics Europe, CML2, Simapro 8, EcoInvent 3 and NREL USLCI model databases. Information on operations is also sourced from:

- Library, document, NPI and web searches, review papers, building manuals and
- Global Industry Association and Government reports on Best Available Technology (BAT).

For benchmarking, comparison and integrity checks inventory data is developed to represent BAT, business as usual and worst practice options with operations covering industry sector supply and infrastructure in Australia and overseas.

Such technology, performance and license conditions were modelled and evaluated across mining, farming, forestry, freight, infrastructure and manufacturing and building industry sectors since 1995.

As most sources do not provide estimates of accuracy, a pedigree matrix of uncertainty estimates to 95% confidence levels of Geometric Standard Deviation² (σ_g) is used to define quality as in Table 6¹⁰.

Correlation Metric σ_{q} U ±0.01 U ±0.05 U ±0.10 U ±0.20 L							
Conclation						U ±0.30	
Reliability	Reporting	Site Audit	Expert verify	Region	Sector	Academic	
	Sample	>66% trend	>25% trend	>10% batch	>5% batch	<1% batch	
Completion	Including	>50%	>25%	>10%	>5%	<5%	
	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w	1%w/w	
Temporal	Data Age	<3 years	≤5 years	<10 years	<15 years	>16 years	
	Duration	>3 years	<3 years	<2 years	1 year	<1 year	
Geography	Focus	Process	Line	Plant	Corporate	Sector	
	Range	Continent	Nation	Plant	Line	Process	
Technology	Typology	Actual	Comparable	In Class	Convention	In Sector	
	Reflects	Process	Mill	Company	Group	Industry	

Table 6 Data Quality Uncertainty (U) for 2017-18

No data set with >±30% uncertainty is used without notation in the LCA as well as the EPD.

¹⁰ Evah Institute data quality control system accords with UNEP SETAC Global LCI Database Quality 2010 Guidelines

Trade Essentials® Particleboard Flooring

15. Supply Chain Modelling Assumptions

Australian building sector rules and Evah assumptions applied are defined in Table 7.

Table 7 Scope Bo	undaries Assumptions and Metadata
Quality/Domain	National including Import and Export
Process Model	Typical industry practice with currently most common or best (BAT) technology
Resource flows	Regional data for resource mapping, fuels, energy, electricity and logistics
Temporal	Project data was collated from 2015 to 2017
Geography	Designated client, site, regional, national, Pacific Rim then European jurisdiction
Representation	Designated client, their suppliers and energy supply chains back to the cradle
Consistency	Model all operations by known given operations with closest proximity
Technology	Pacific Rim Industry Supply Chain Technology typical of 2015 to 2018
Functional Unit	Typical product usage with cleaning& disposal/m ² over the set year service life
System Control	
Primary Sources	Clients and suppliers mills, publications, websites, specifications & manuals
Other Sources	IEA 2018, GGT 2018, Boustead 2013, Simapro 2016, IBIS 2018, Ecolnvent 2018
Data mix	Power grid and renewable shares updated to latest IEA 2018 reports
Operational	Company data for process performance, product share, waste and emissions
Logistics	Local data is used for power, fuel mix, water supply, logistics share & capacity
New Data Entry	VliegLCA, Evah Institute 2018; Global Green Tag Researchers 2018
Data Generator	Manufacturers, Evah Institute 2018; GGT 2018; Meta: IBIS 2018, Other pre 2018
Data Publisher	The Evah Institute Pty Ltd to Global GreenTag and designated client only
Persons input	All contributors cited in Evah & Global GreenTag records or websites
Data Flow & Mix	
System Boundary	Earth's cradle of all resource & emission flows to end of use, fitout or build life
System flows	All known from and to air, land, water and community sources & sinks
Capital inclusions	Natural stocks Δ , industry stockpiles Δ , capital wear Δ , system losses and use
Arid Practice	Dry technology adopted, Water use is factored by 0.1 as for e.g. Mining
Transportation	Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance
Industrial	Company or industry sector data for manufacturing and minerals involved
Mining	All raw material extraction is based on Australian or Pacific Rim technology
Imported fuel	Mix is from nearest sources is e.g. UAE, SE Asia, Canada or New Zealand
Finishes	Processing inputs with finishing burdens are factored in. If not that is denoted
Validation	
Accuracy	10^{th} generation study is ± 5 to 15% uncertain due to some background data
Completeness	All significant operations are tracked and documented from the cradle to grave
Precision	Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond
Allocation	%100 to co products on reaction stoichiometry by energetic or mass fraction
Burdens	All resource use from & emissions to community air land, water are included
Plausibility	Results are checked and benchmarked against BAT, BAU & worst practice
Sensitivity	Calculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.2
Validity Checks	Are made versus Plastics Europe, Ecobilan, GaBi & or Industry LCA Literature

Table 7 Scope Boundaries Assumptions and Metadata

Trade Essentials® Particleboard Flooring

16. References for this LCA & EPD

Australian & New Zealand (ANZECC) Guidelines For Fresh & Marine Water Quality (2000) http://www.environment.gov.au/water/guality/national-water-guality-management-strategy Basel Convention (2011) Control of Transboundary Movement of Hazardous Waste & Disposal http://www.basel.int/portals/4/basel%20convention/docs/text/baselconventiontext-e.pdf Boustead (2014) Model 6 LCI database http://www.boustead-consulting.co.uk/publicat.htm USA & UK Ecolnvent (2016) LCI Model 3 database http://www.ecoinvent.ch/ Ecolnvent, Switzerland Evah (2016) LCA Tools, Databases & Methodology at http://www.evah.com.au/tools.html Franklin Associates (2016) US LCI Database http://www.fal.com/index.html Eastern Research Group US GreenTag™ Certification (2016) http://www2.ecospecifier.org/services_offered/greentag_certification GreenTag[™] (2016) Product Category Rules http://www.globalgreentag.com/greentag-epd-program Jones D., Mitchell, P. & Watson P. (2004) LCI Database for Australian Commercial Building Material: Report 2001-006-B-15, Sustainable Built Assets, CRC for Construction Innovation Jones D.G et al. (2009) Chapter 3: Material Environmental LCA in Newton P et al., (eds) Technology, Design & Process Innovation in the Built Environment, Taylor & Francis, UK IBISWorld (2014) Market Research, http://www.ibisworld.com.au/ IBISWorld Australia International Energy Agency (2016) Energy Statistics http://www.iea.org/countries/membercountries/ ISO 9001:2008 Quality Management Systems Requirements ISO 14001:2004 Environmental management systems: Requirements with guidance for use ISO 14004:2004 EMS: General guidelines on principles, systems & support techniques ISO 14015:2001 EMS: Environmental assessment of sites & organizations (EASO) ISO 14020:2000 Environmental labels & declarations - General principles ISO 14024:2009 Environmental labels & declarations -- Type I Principles & procedures ISO 14025:2006 Environmental labelling & declarations Type III EPDs Principles & procedures ISO 14031:1999 EM: Environmental performance evaluation: Guidelines ISO 14040:2006 EM: Life cycle assessment (LCA): Principles & framework ISO 14044:2006 EM: LCA: Requirement & guideline for data review: LCI; LCIA, Interpretation results ISO 14064:2006 EM: Greenhouse Gases: Organisation & Project reporting, Validation & verification ISO 15392:2008 Sustainability in building construction General principles ISO 15686-1:2011 Buildings & constructed assets Service life planning Part 1: General principles ISO 15686-2:2012 Buildings & constructed assets Service life (SL) planning Part 2: prediction ISO 15686-8:2008 Buildings & constructed assets SL planning Part 8: Reference & estimation ISO 21929-1:2011 Sustainability in building construction Sustainability indicators Part 1: Framework ISO 21930:2007 Building construction: Sustainability, Environmental declaration of building products ISO/TS 21931-1:2010 Sustainability in building construction: Framework for assessment. Part 1: ISO 21932:2013 Sustainability in buildings and civil engineering works -- A review of terminology Plastics Europe (2016) Portal http://www.plasticseurope.org/plastics-sustainability/eco-profiles.aspx Pre (2016) SimaPro 8 Software, The Netherlands http://www.pre-sustainability.com/simapro-manuals Myhre et al. 2013, Anthropogenic and Natural Radiative Forcing Chapter 8 in Stocker et al (eds.) Climate Change 2013, AR5 of the IPCC, Cambridge U Press UK. http://www.ipcc.ch/report/ar5/wg1/ Roache S. K. (2012) IMF Report WP/12/115 China's Impact on World Commodity Markets http://www.imf.org/external/pubs/ft/wp/2012/wp12115.pdf International Monetary Fund UNEP (2016) Persistent Organic Pollutants http://www.chem.unep.ch/pops/ The UN USLCI (2016) Life-Cycle Inventory Database https://www.lcacommons.gov/nrel/search, USA U.S. Geological Survey National Minerals (2016) http://minerals.usgs.gov/minerals/pubs/country/ USA US EPA (2016) Database of Sources of Environmental Releases of Dioxin like Compounds in U.S http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20797 p 1-38, 6-9, USA

Trade Essentials® Particleboard Flooring

17. Reviewers Report Conclusions

The independent LCA reviewer's report confirmed that the LCA project report and addition information addressed the EPD. The verifier was not involved in the LCA or EPD development and has no conflict of interests from their organisational position. While the report is confidential its conclusions confirmed documentation according to set ISO requirements was provided including evidence from the:

The LCA developer, The Evah Institute:

a) Recipes of input and output data of unit processes used for LCA calculations	\checkmark
b) Datasheets of measures, calculations, estimates and emails with sources as in Table 6	\checkmark
e) References to literature and databases from which data was extracted as noted in Table 6	\checkmark
g) Notes on supply chain processes and scenarios satisfying requirements of this Standard	\checkmark
i) Embodied Energy shares as used for sensitivity analyses re ISO 14044:2006, 4.5.3.3	\checkmark
j) Proof percentages or figures in calculations in the end of life scenario	\checkmark
k) Notes on proof of % and allocation calculations	\checkmark
o) All operations covered Vs criteria and substantiation used to determine system boundaries	\checkmark
The Product Manufacturer in:	
c) Specifications used to create the manufacturer's product	\checkmark
d) Citations, references, specifications or regulations & data showing completeness	\checkmark
f) Specification demonstrating that the building product can fulfil the intended use	\checkmark
The Certifier Global GreenTag on:	
	,
I) Notes and calculation of averages of different locations yielding generic data	\checkmark
m) Substantiating additional environmental information ISO 14025:2006, 7.2.4	\checkmark
n) Procedures for data collection, questionnaires, instructions, confidentiality deeds	\checkmark
Requiring No Evidence:	
As the EPD is cradle to grave as well as PCR compliant the independent reviewer did not need	to:
h) Substantiate a few stages as all stages were substantiated	1
	N
p) Substantiate alternatives when no other choices and assumptions were applied	\checkmark
q) Demonstrate consistency for few stages as the same rules in Tables 6 and 7 applied to all.	\checkmark

Trade Essentials® Particleboard Flooring

This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with ISO 14025 for business to business communication.

Further and explanatory information is found at

http://www.globalgreentag.com/ or contact: certification1@globalgreentag.com

Global GreenTagCertTM EPD Program Environmental Product Declaration Compliant to ISO 14025

© This EPD remains the property of the Global GreenTag Pty Ltd